年份: ~

全部成果分类

显示更多

按条件检索“12”条记录

已选条件:
导出
  • 排序
  • 显示
1. Dispersion for periodic electro-osmotic flow of Maxwell fluid through a microtube EI SCIE SCOPUS 期刊论文 认领

作者:Li, HC;Jian, YJ

作者全称:Li, Huicui;Jian, Yongjun

作者机构:[Li, Huicui; Jian, Yongjun] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Inner Mongolia, Peoples R China.

第一作者:Li, Huicui

通讯作者:Jian, Yongjun(jianyj@imu.edu.cn)

通讯作者地址:Jian, YJ (reprint author), Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Inner Mongolia, Peoples R China.

来源:INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER,2017,Vol.115

基金:National Natural Science Foundation of China [11472140]; Natural Science Foundation of Inner Mongolia Autonomous Region of China [2016MS0106]; Inner Mongolia Grassland Talent [12000-12102013]

JCR分区:MECHANICS为Q1;THERMODYNAMICS为Q1;ENGINEERING, MECHANICAL为Q1

中科院分区:大类工程技术2区;小类工程:机械2区;小类力学2区;小类热力学2区

(JCR)当年影响因子:3.891

(JCR)5年影响因子:3.95

SCOPUS被引频次:4

ESI学科:ENGINEERING

教育部学科:社会学,地质学,动力工程及工程热物理,机械工程

关键词:Electroosmotic flow (EOF); Maxwell fluid; Mean concentration C-m; Dispersion coefficient K(t); Series expansion method

摘要:This paper mainly studies the solute dispersion driven by the periodic oscillatory electro-osmotic flow of viscoelastic fluid described by Maxwell con 更多

2. An expanded mixed covolume element method for integro-differential equation of Sobolev type on triangular grids SCIE SCOPUS 期刊论文 认领

作者:Fang, ZC;Li, H;Liu, Y;He, S

作者全称:Fang, Zhichao;Li, Hong;Liu, Yang;He, Siriguleng

作者机构:[Fang, Zhichao; Li, Hong; Liu, Yang; He, Siriguleng] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

第一署名单位:[Fang, Zhichao; Li, Hong; Liu, Yang; He, Siriguleng] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

第一作者:Fang, Zhichao

通讯作者:Fang, ZC

通讯作者地址:Fang, ZC (reprint author), Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

来源:ADVANCES IN DIFFERENCE EQUATIONS,2017,Vol.2017,Issue.1

基金:National Natural Science Fund of China [11661058, 11361035, 11501311]; Natural Science Fund of Inner Mongolia Autonomous Region [2016BS0105, 2016MS0102, 2017MS0107]; Scientific Research Projection of Higher Schools of Inner Mongolia [NJZY14013]; Program of Higher-Level Talents of Inner Mongolia University [30105-135127]

JCR分区:MATHEMATICS为Q1;MATHEMATICS, APPLIED为Q2

中科院分区:大类数学4区;小类数学4区;小类应用数学4区

(JCR)当年影响因子:1.066

(JCR)5年影响因子:1.095

ESI学科:MATHEMATICS

教育部学科:数学

关键词:integro-differential equation of Sobolev type; expanded mixed covolume element method; optimal a priori error estimate

摘要:The expanded mixed covolume Element (EMCVE) method is studied for the two-dimensional integro-differential equation of Sobolev type. We use a piecewis 更多

3. Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation SCIE SCOPUS 期刊论文 认领

作者:Du, YW;Liu, Y;Li, H;Fang, ZC;He, S

作者全称:Du, Yanwei;Liu, Yang;Li, Hong;Fang, Zhichao;He, Siriguleng

作者机构:[Du, Yanwei; Liu, Yang; Li, Hong; Fang, Zhichao; He, Siriguleng] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

第一署名单位:[Du, Yanwei; Liu, Yang; Li, Hong; Fang, Zhichao; He, Siriguleng] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

第一作者:Du, Yanwei

通讯作者:Liu, Y

通讯作者地址:Liu, Y (reprint author), Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

来源:JOURNAL OF COMPUTATIONAL PHYSICS,2017,Vol.344

基金:National Natural Science Foundation of China [11661058, 11361035, 11501311]; Natural Science Fund of Inner Mongolia Autonomous Region [2014BS0101]; Scientific Research Projection of Higher Schools of Inner Mongolia [NJZZ12011, NJZY14013]

JCR分区:COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS为Q2;PHYSICS, MATHEMATICAL为Q1

中科院分区:大类物理2区;小类计算机:跨学科应用2区;小类物理:数学物理1区

(JCR)当年影响因子:2.864

(JCR)5年影响因子:3.186

SCOPUS被引频次:5

ESI学科:PHYSICS

教育部学科:光学工程,物理学,电子科学与技术,船舶与海洋工程

关键词:Nonlinear time-fractional fourth-order problem; WSGD scheme; LDG method; High-order scheme; Caputo fractional derivative

摘要:In this article, a fully discrete local discontinuous Galerkin (LDG) method with high-order temporal convergence rate is presented and developed to lo 更多

4. Analysis of a space-time continuous Galerkin method for convection-dominated Sobolev equations EI SCIE SCOPUS 期刊论文 认领

作者:Zhao, ZH;Li, H;Luo, ZD

作者全称:Zhao, Zhihui;Li, Hong;Luo, Zhendong

作者机构:[Zhao, Zhihui; Li, Hong] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.;[Luo, Zhendong] North China Elect Power Univ, Sch Math & P 更多

第一署名单位:[Zhao, Zhihui; Li, Hong] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

第一作者:Zhao, Zhihui

通讯作者:Li, Hong(malhong@imu.edu.cn)

通讯作者地址:Li, H (reprint author), Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.; Luo, ZD (reprint author), North China Elect Power Univ, Sch Math & Phys, Beijing 102206, Peoples R China.

来源:COMPUTERS & MATHEMATICS WITH APPLICATIONS,2017,Vol.73,Issue.8

基金:National Science Foundation of China [11361035, 11671106, 11301258]; Natural Science Foundation of Inner Mongolia [2014BS0101]; Science Research Program of Inner Mongolia Advanced Education [NJZY14013]; Postgraduate Scientific Research Innovation Foundation of Inner Mongolia [11200-12110201]

JCR分区:MATHEMATICS, APPLIED为Q1

中科院分区:大类工程技术3区;小类应用数学2区

(JCR)当年影响因子:1.86

(JCR)5年影响因子:2.08

ESI学科:MATHEMATICS

关键词:Continuous Galerkin method; Sobolev equations with convection-dominated terms; Optimal convergence rates; Numerical examples

摘要:The convergence of space-time continuous Galerkin (STCG) method for the Sobolev equations with convection-dominated terms is studied in this article. 更多

5. High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation EI SCIE SCOPUS 期刊论文 认领

作者:Liu, Y;Zhang, M;Li, H;Li, JC

作者全称:Liu, Yang;Zhang, Min;Li, Hong;Li, Jichun

作者机构:[Liu, Yang; Zhang, Min; Li, Hong] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.;[Li, Jichun] Univ Nevada, Dept Math Sci, Las Vega 更多

第一署名单位:[Liu, Yang; Zhang, Min; Li, Hong] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

第一作者:Liu, Yang

通讯作者:Liu, Yang(mathliuyang@aliyun.com)

通讯作者地址:Liu, Y (reprint author), Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

来源:COMPUTERS & MATHEMATICS WITH APPLICATIONS,2017,Vol.73,Issue.6

基金:National Natural Science Fund [11301258, 1361035]; National Science Foundation [DMS-1416742]; Natural Science Fund of Inner Mongolia Autonomous Region [2016MS0102]

JCR分区:MATHEMATICS, APPLIED为Q1

中科院分区:大类工程技术3区;小类应用数学2区

(JCR)当年影响因子:1.86

(JCR)5年影响因子:2.08

WOS被引频次:1

SCOPUS被引频次:5

ESI学科:MATHEMATICS

关键词:Time fractional subdiffusion equation; High-order scheme; LDG method; WSGD operator; Stability; Error estimates

摘要:In this paper, a high-order local discontinuous Galerkin (LDG) method combined with weighted and shifted Grunwald difference (WSGD) approximation is d 更多

6. Second-order approximation scheme combined with H-1-Galerkin MFE method for nonlinear time fractional convection-diffusion equation EI SCIE SCOPUS 期刊论文 认领

作者:Wang, JF;Liu, TQ;Li, H;Liu, Y;He, SRGL

作者全称:Wang, Jinfeng;Liu, Tianqi;Li, Hong;Liu, Yang;He, Siriguleng

作者机构:[Wang, Jinfeng; Liu, Tianqi; Li, Hong; Liu, Yang; He, Siriguleng] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.;[Wang, Jinfeng] I 更多

第一署名单位:[Wang, Jinfeng; Liu, Tianqi; Li, Hong; Liu, Yang; He, Siriguleng] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

第一作者:Wang, Jinfeng

通讯作者:Li, Hong(smslh@imu.edu.cn)

通讯作者地址:Li, H; Liu, Y (reprint author), Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

来源:COMPUTERS & MATHEMATICS WITH APPLICATIONS,2017,Vol.73,Issue.6

基金:National Natural Science Fund [11301258, 11361035, 11501311]; Natural Science Fund of Inner Mongolia Autonomous Region [2015MS0114, 2016MS0102]

JCR分区:MATHEMATICS, APPLIED为Q1

中科院分区:大类工程技术3区;小类应用数学2区

(JCR)当年影响因子:1.86

(JCR)5年影响因子:2.08

WOS被引频次:1

SCOPUS被引频次:3

ESI学科:MATHEMATICS

关键词:Nonlinear time fractional convection-diffusion equation; H1-Galerkin MFE method; Second -order WSGD approximation; Optimal convergence rate

摘要:In this article, a second-order approximation scheme combined with an H-1-Galerkin mixed finite element (MFE) method for solving nonlinear convection- 更多

7. A MFE method combined with L1-approximation for a nonlinear time-fractional coupled diffusion system EI SCOPUS 期刊论文 会议论文 认领

作者:Hou, YX;Feng, RH;Liu, Y;Li, H;Gao, W

作者全称:Hou, Yaxin;Feng, Ruihan;Liu, Yang;Li, Hong;Gao, Wei

作者机构:[Hou, Yaxin; Feng, Ruihan; Liu, Yang; Li, Hong; Gao, Wei] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

第一作者:Hou, Yaxin

通讯作者:Li, Hong(smslh@imu.edu.cn)

通讯作者地址:Liu, Y; Li, H (reprint author), Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

来源:INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING,2017,Vol.8,Issue.1

基金:National Natural Science Fund [11661058, 11301258, 11361035]; Natural Science Fund of Inner Mongolia Autonomous Region [2016MS0102, 2015MS0101]; Scientific Research Projection of Higher Schools of Inner Mongolia [NJZZ12011]; National Undergraduate Innovative Training Project [201510126026]

教育部学科:数学,控制科学与工程,软件工程,计算机科学与技术

关键词:L1-approximation; implicit second-order backward difference scheme; time-fractional coupled diffusion problem; stability; a priori error analysis

摘要:In this paper, a nonlinear time-fractional coupled diffusion system is solved by using a mixed finite element (MFE) method in space combined with L1-a 更多

8. A space-time continuous Galerkin method with mesh modification for viscoelastic wave equations EI SCIE SCOPUS 期刊论文 认领

作者:Zhao, ZH;Li, H;Luo, ZD

作者全称:Zhao, Zhihui;Li, Hong;Luo, Zhendong

作者机构:[Zhao, Zhihui; Li, Hong] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.;[Luo, Zhendong] North China Elect Power Univ, Sch Math & P 更多

第一署名单位:[Zhao, Zhihui; Li, Hong] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

第一作者:Zhao, Zhihui

通讯作者:Li, Hong(malhong@imu.edu.cn)

通讯作者地址:Li, H (reprint author), Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China.

来源:NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS,2017,Vol.33,Issue.4

基金:National Science Foundation of China [11361035, 11271127, 11301258]; Natural Science Foundation of Inner Mongolia [2014BS0101]; Science Research Program of Inner Mongolia Advanced Education [NJZY14013]

JCR分区:MATHEMATICS, APPLIED为Q2

中科院分区:大类数学3区;小类应用数学3区

(JCR)当年影响因子:1.305

(JCR)5年影响因子:1.334

SCOPUS被引频次:1

ESI学科:ENGINEERING

关键词:numerical example; optimal order error estimates; space-time continuous Galerkin method; viscoelastic wave equations

摘要:In this article, we consider the space-time continuous Galerkin (STCG) method for the viscoelastic wave equations. It allows variable temporal step-si 更多

9. 反应扩散方程的连续时空有限元方法 CSCD 北大核心刊 期刊论文 认领

作者:李宏;杜春瑶;赵智慧

外文作者:Li Hong;Du Chunyao;Zhao Zhihui

第一作者:李宏

作者机构:[李宏] 内蒙古大学数学科学学院, 呼和浩特, 内蒙古 010021, 中国.;[杜春瑶] 内蒙古大学数学科学学院, 呼和浩特, 内蒙古 010021, 中国.;[赵智慧] 内蒙古大学数学科 更多

来源:计算数学,2017,Vol.39,Issue.2

基金:国家自然科学基金; 内蒙古自然科学基金; 内蒙古高等学校科学研究项目

知网综合影响因子:0.706

知网复合影响因子:0.897

关键词:反应扩散方程; 连续时空有限元方法; 最优范数估计; 数值算例

摘要:本文研究了反应扩散方程的连续时空有限元方法.首先建立了其连续时空有限元格式并证明了有限元解的存在唯一性及稳定性.然后通过引入时空投影算子在没有时 空网格限 更多

10. 发展型方程的连续时空有限元方法及其数值模拟 学位论文 认领

作者:赵智慧

学位授予单位:内蒙古大学

导师:李宏

学位名称:博士

论文提交日期:2017

学位论文类别:博士学位论文

11. 一类抛物方程的降基连续时空有限元方法 CSCD 北大核心刊 期刊论文 认领

作者:董自明;李宏;赵智慧

外文作者:Dong Ziming;Li Hong;Zhao Zhihui

第一作者:董自明

作者机构:[董自明] 内蒙古大学数学科学学院, 呼和浩特, 内蒙古 010021, 内蒙古,中国.;[李宏] 内蒙古大学数学科学学院, 呼和浩特, 内蒙古 010021, 内蒙古,中国.;[赵智慧] 内 更多

来源:应用数学,2017,Vol.30,Issue.3

基金:国家自然科学基金; 内蒙古自然科学基金; 内蒙古高等学校科学研究项目

知网综合影响因子:0.251

知网复合影响因子:0.326

关键词:抛物方程; 连续时空有限元方法; 降基方法; 后验误差估计

摘要:本文将连续时空有限元方法和降基方法相结合研究一类抛物方程. 该类降基连续时空有限元方法既具有时空高精度的优势, 又具有降基法减少自由度的优点. 并给出一类抛 更多

12. 基于正弦型光滑打磨函数对0-1规划问题的连续化求解方法 CSCD 北大核心刊 期刊论文 认领

作者:隋允康;李臻臻;李宏;陈国庆

外文作者:Sui Yunkang;Li Zhenzhen;Li Hong;Chen Guoqing

第一作者:隋允康

作者机构:[隋允康] 北京工业大学机械工程与电子技术学院, 北京 100124, 中国.;[李臻臻] 内蒙古师范大学数学科学学院, 呼和浩特, 内蒙古 010022, 中国.;[李宏] 内蒙古大学数 更多

来源:运筹学学报,2017,Vol.21,Issue.3

基金:国家自然科学基金; 内蒙古自治区自然科学基金; 内蒙古自治区高等学校科学研究项目; 内蒙古师范大学科研基金

知网综合影响因子:0.379

知网复合影响因子:0.641

关键词:跃函数; 0-1规划问题; 离散; 连续; 折中阶跃函数; 光滑打磨函数; 正弦型打磨函数

摘要:传统的求解0-1规划问题方法大多属于直接离散的解法.现提出一个包含严格转换和近似逼近三个步骤的连续化解法:(1)借助阶跃函数把0-1离散变量转化 为[0,1]区间上的连 更多

更新时间:Mar 28, 2019
TOP